Publications by authors named "B D Ippel"

Supramolecular motifs in elastomeric biomaterials facilitate the modular incorporation of additives with corresponding motifs. The influence of the elastomeric supramolecular base polymer on the presentation of additives has been sparsely examined, limiting the knowledge of transferability of effective functionalization between polymers. Here it was investigated if the polymer backbone and the additive influence biomaterial modification in two different types of hydrogen bonding supramolecular systems, that is, based on ureido-pyrimidinone or bis-urea units.

View Article and Find Full Text PDF

The mechanical properties of scaffolds used for mechanically challenging applications such as cardiovascular implants are unequivocally important. Here, the effect of supramolecular additive functionalization on mechanical behavior of electrospun scaffolds was investigated for one bisurea-based model additive and two previously developed antifouling additives. The model additive has no effect on the mechanical properties of the bulk material, whereas the stiffness of electrospun scaffolds was slightly decreased compared to pristine PCL-BU following the addition of the three different additives.

View Article and Find Full Text PDF

Surface-initiated controlled radical polymerization is a popular technique for the modification of biomaterials with, for example, antifouling polymers. Here, we report on the functionalization of a supramolecular biomaterial with zwitterionic poly(sulfobetaine methacrylate) via atom transfer radical polymerization from a macroinitiator additive, which is embedded in the hard phase of the ureido-pyrimidinone-based material. Poly(sulfobetaine methacrylate) was successfully polymerized from these surfaces, and the polymerized sulfobetaine content, with corresponding antifouling properties, depended on both the macroinitiator additive concentration and polymerization time.

View Article and Find Full Text PDF

The bioactive additive toolbox to functionalize supramolecular elastomeric materials expands rapidly. Here we have set an explorative step toward screening of complex combinatorial functionalization with antifouling and three peptide-containing additives in a bisurea-based supramolecular system. Thorough investigation of surface properties of thin films with contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy, was correlated to cell-adhesion of endothelial and smooth muscle cells to apprehend their respective predictive values for functional biomaterial development.

View Article and Find Full Text PDF

Biomaterials are increasingly used for in situ vascular tissue engineering, wherein resorbable fibrous scaffolds are implanted as temporary carriers to locally initiate vascular regeneration. Upon implantation, macrophages infiltrate and start degrading the scaffold, while simultaneously driving a healing cascade via the secretion of paracrine factors that direct the behavior of tissue-producing cells. This balance between neotissue formation and scaffold degradation must be maintained at all times to ensure graft functionality.

View Article and Find Full Text PDF