Publications by authors named "B D Easter"

Introduction: The Alzheimer's Disease Neuroimaging Initiative-4 (ADNI-4) Engagement Core was launched to advance Alzheimer's disease (AD) and AD-related dementia (ADRD) health equity research in underrepresented populations (URPs). We describe our evidence-based, scalable culturally informed, community-engaged research (CI-CER) model and demonstrate its preliminary success in increasing URP enrollment.

Methods: URPs include ethnoculturally minoritized, lower education (≤ 12 years), and rural populations.

View Article and Find Full Text PDF

Current Space Medicine operations depend on terrestrial support to manage medical events. As astronauts travel to destinations such as the Moon, Mars, and beyond, distance will substantially limit this support and require increasing medical autonomy from the crew. This paper defines Earth Independent Medical Operations (EIMO) and identifies key elements of a conceptual EIMO system.

View Article and Find Full Text PDF

Exploration beyond low Earth orbit requires innovative solutions to support the crew medically, especially as the opportunity for timely evacuation to Earth diminishes. This includes assessing the risks and benefits that a complicated medical evacuation (MEDEVAC) poses to the injured crewmember, the crew, and the mission. This qualitative study identifies common MEDEVAC risk assessment principles used in spaceflight and other extreme environments to better inform future risk assessment tools and exploration mission concepts.

View Article and Find Full Text PDF

As NASA prepares for crewed lunar missions over the next several years, plans are also underway to journey farther into deep space. Deep space exploration will require a paradigm shift in astronaut medical support toward progressively earth-independent medical operations (EIMO). The Exploration Medical Capability (ExMC) element of NASA's Human Research Program (HRP) is investigating the feasibility and value of advanced capabilities to promote and enhance EIMO.

View Article and Find Full Text PDF

Pharmaceuticals selected for exploration space missions must remain stable and effective throughout mission timeframes. Although there have been six spaceflight drug stability studies, there has not been a comprehensive analytical analysis of these data. We sought to use these studies to quantify the rate of spaceflight drug degradation and the time-dependent probability of drug failure resulting from the loss of active pharmaceutical ingredient (API).

View Article and Find Full Text PDF