The Kamioka Liquid scintillator Anti-Neutrino Detector is used in a search for single neutron or two-neutron intranuclear disappearance that would produce holes in the -shell energy level of (12)C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (inv), e.g.
View Article and Find Full Text PDFThe detection of electron antineutrinos produced by natural radioactivity in the Earth could yield important geophysical information. The Kamioka liquid scintillator antineutrino detector (KamLAND) has the sensitivity to detect electron antineutrinos produced by the decay of 238U and 232Th within the Earth. Earth composition models suggest that the radiogenic power from these isotope decays is 16 TW, approximately half of the total measured heat dissipation rate from the Earth.
View Article and Find Full Text PDFWe present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 nu (e) candidate events with energies above 3.4 MeV compared to 365.
View Article and Find Full Text PDFPhys Rev Lett
February 2004
Data corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for nu;(e)'s in the energy range 8.3
KamLAND has measured the flux of nu;(e)'s from distant nuclear reactors. We find fewer nu;(e) events than expected from standard assumptions about nu;(e) propagation at the 99.95% C.
View Article and Find Full Text PDF