Antibody-oligonucleotide conjugates (AOCs) are promising treatments for Duchenne muscular dystrophy (DMD). They work via induction of exon skipping and restoration of dystrophin protein in skeletal and heart muscles. The structure-activity relationships (SARs) of AOCs comprising antibody-phosphorodiamidate morpholino oligomers (PMOs) depend on several aspects of their component parts.
View Article and Find Full Text PDFAlthough targeting TfR1 to deliver oligonucleotides to skeletal muscle has been demonstrated in rodents, effectiveness and pharmacokinetic/pharmacodynamic (PKPD) properties remained unknown in higher species. We developed antibody-oligonucleotide conjugates (AOCs) towards mice or monkeys utilizing anti-TfR1 monoclonal antibodies (αTfR1) conjugated to various classes of oligonucleotides (siRNA, ASOs and PMOs). αTfR1 AOCs delivered oligonucleotides to muscle tissue in both species.
View Article and Find Full Text PDFThe further optimization of ER-α degradation efficacy of a series of ER modulators by refining side-chain substitution led to efficacious selective estrogen receptor degraders (SERDs). A fluoromethyl azetidine group was found to be preferred and resulted in the identification of bis-phenol chromene . In a tamoxifen-resistant breast cancer xenograft model, (ER-α degradation efficacy = 97%) demonstrated tumor regression, together with robust reduction of intratumoral ER-α levels.
View Article and Find Full Text PDFPotent estrogen receptor ligands typically contain a phenolic hydrogen-bond donor. The indazole of the selective estrogen receptor degrader (SERD) ARN-810 is believed to mimic this. Disclosed herein is the discovery of ARN-810 analogs which lack this hydrogen-bond donor.
View Article and Find Full Text PDF