Publications by authors named "B Crossett"

Article Synopsis
  • Inositol tris/tetrakis phosphate kinases (IPK), specifically Arg1 and Ipk2, are essential for virulence in human fungal pathogens, but it is unclear whether their catalytic activity or structural role is the key factor.
  • Researchers created a non-functional version of Arg1 called dkArg1 to investigate the role of IPK activity, discovering that both dkArg1 and a deletion strain had significant virulence defects and were unable to survive at higher temperatures and respond to nutrient conditions.
  • The study highlights that while IPK activity is crucial for fungal virulence, the pathway's function may have evolved differently in fungal pathogens, suggesting IPK could be a potential target for new antif
View Article and Find Full Text PDF

Objective: Chronic obstructive pulmonary disease (COPD) is a major cause of global illness and death, most commonly caused by cigarette smoke. The mechanisms of pathogenesis remain poorly understood, limiting the development of effective therapies. The gastrointestinal microbiome has been implicated in chronic lung diseases via the gut-lung axis, but its role is unclear.

View Article and Find Full Text PDF

Mouse monoclonal 12E8 antibody, which recognises conserved serine phosphorylated KXGS motifs in the microtubule binding domains of tau/tau-like microtubule associated proteins (MAPs), shows elevated binding in brain during normal embryonic development (mammals and birds) and at the early stages of human Alzheimer's disease (AD). It also labels ADF/cofilin-actin rods that form in neurites during exposure to stressors. We aimed to identify direct and indirect 12E8 binding proteins in postnatal mouse brain and embryonic chick brain by immunoprecipitation (IP), mass spectrometry and immunofluorescence.

View Article and Find Full Text PDF

The repair of double-strand DNA breaks (DSBs) by homologous recombination is crucial in the maintenance of genome integrity. While the key role of the Mre11-Rad50-Nbs1 (MRN) complex in repair is well known, hSSB1 (SOSSB and OBFC2B), one of the main components of the sensor of single-stranded DNA (SOSS) protein complex, has also been shown to rapidly localize to DSB breaks and promote repair. We have previously demonstrated that hSSB1 binds directly to Nbs1, a component of the MRN complex, in a DNA damage-independent manner.

View Article and Find Full Text PDF

Through an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1 Å are consistent with theoretical prediction.

View Article and Find Full Text PDF