Publications by authors named "B Crise"

The sequential interaction of the envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) with CD4 and certain chemokine coreceptors initiates host cell entry of the virus. The appropriate chemokines have been shown to inhibit viral replication by blocking interaction of the gp120 envelope protein with the coreceptors. We considered the possibility that this interaction involves a motif of the gp120 that may be structurally homologous to the chemokines.

View Article and Find Full Text PDF

Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells.

View Article and Find Full Text PDF

Selective inactivation of critical cysteine residues in human immunodeficiency virus type one (HIV-1) was observed after treatment with 4-vinylpyridine (4-VP), with and without the membrane-permeable metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). Chromatographic analysis showed that cysteines contained within nucleocapsid zinc fingers, in the context of whole virus or purified protein, were essentially unreactive, but became reactive when a chelator was included. Virus treated with 4-VP showed only a modest decrease in infectivity; after TPEN addition, nearly complete inactivation of HIV-1 occurred.

View Article and Find Full Text PDF

Retroviral integration into the host genome is not entirely random, and integration site preferences vary among different retroviruses. Human immunodeficiency virus (HIV) prefers to integrate within active genes, whereas murine leukemia virus (MLV) prefers to integrate near transcription start sites and CpG islands. On the other hand, integration of avian sarcoma-leukosis virus (ASLV) shows little preference either for genes, transcription start sites, or CpG islands.

View Article and Find Full Text PDF

Simian immunodeficiency virus (SIV) is a useful model for studying human immunodeficiency virus (HIV) pathogenesis and vaccine efficacy. As with all other retroviruses, integration is a necessary step in the replication cycle of SIV. The location of the retrovirus integration site is known to impact on viral gene expression, establishment of viral latency, and other aspects of the replication cycle of a retrovirus.

View Article and Find Full Text PDF