Publications by authors named "B Collinet"

In Archaea and Eukaryotes, the synthesis of a universal tRNA modification, N-threonyl-carbamoyl adenosine (tA), is catalyzed by the KEOPS complex composed of Kae1, Bud32, Cgi121, and Pcc1. A fifth subunit, Gon7, is found only in Fungi and Metazoa. Here, we identify and characterize a fifth KEOPS subunit in Archaea.

View Article and Find Full Text PDF

The tRNA modification N6-threonylcarbamoyladenosine (t6A) is universally conserved in all organisms. In bacteria, the biosynthesis of t6A requires four proteins (TsaBCDE) that catalyze the formation of t6A via the unstable intermediate l-threonylcarbamoyl-adenylate (TC-AMP). While the formation and stability of this intermediate has been studied in detail, the mechanism of its transfer to A37 in tRNA is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • N-threonyl-carbamoylation of adenosine 37 in ANN-type tRNAs is crucial for accurate protein translation, utilizing the YRDC and OSGEP enzymes.
  • Mutations in the KEOPS complex subunits have been linked to Galloway-Mowat syndrome, with YRDC mutations causing severe symptoms and GON7 mutations resulting in milder forms.
  • The crystal structure of a GON7 subcomplex reveals that GON7 becomes partially structured when interacting with LAGE3, indicating its role in stabilizing the KEOPS complex.
View Article and Find Full Text PDF

The universal N6-threonylcarbamoyladenosine (t6A) modification at position A37 of ANN-decoding tRNAs is essential for translational fidelity. In bacteria the TsaC enzyme first synthesizes an l-threonylcarbamoyladenylate (TC-AMP) intermediate. In cooperation with TsaB and TsaE, TsaD then transfers the l-threonylcarbamoyl-moiety from TC-AMP onto tRNA.

View Article and Find Full Text PDF