Publications by authors named "B Champagnon"

Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range.

View Article and Find Full Text PDF

Densified silica can be obtained by different pressure and temperature paths and for different stress conditions, hydrostatic or including shear. The density is usually the macroscopic parameter used to characterize the different compressed silica samples. The aim of our present study is to compare structural modifications for silica glass, densified from several routes.

View Article and Find Full Text PDF

Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio.

View Article and Find Full Text PDF

Glass formation, and associated potential polyamorphism are investigated for the key ceramic Y2O3-Al2O3 using a combination of experimental and theoretical techniques. Liquid samples are rapidly cooled by drop quenching and high and low density amorphous regions (LDA and HDA respectively) are identified using reflected light microscopy. Raman spectra are obtained to low frequency focussed on regions identified as pure LDA or HDA.

View Article and Find Full Text PDF

Understanding the response of glasses to high pressure is of key importance for clarifying energy-dissipation and the origin of material damage during mechanical load. In the absence of shear bands or motile dislocations, pressure-induced deformation is governed by elastic and inelastic structural changes which lead to compaction of the glass network. Here, we report on a pressure-induced reconstructive amorphous-amorphous transition which was detected in sodium borosilicate glass by Raman and Brillouin scattering.

View Article and Find Full Text PDF