Biodegradable films are a promising strategy to reduce the environmental impact caused by conventional plastics commonly used in agriculture. This study focused on the production and characterization of Konjac glucomannan (KGM) and alginate (ALG) based films enriched with sugarcane vinasse (VIN), a nutrient-rich wastewater generated in large volumes by the sugar-ethanol producing industries. ALG, KGM and ALG/KGM blended (50:50) films were produced by casting and treated with calcium ions (Ca) (ALG films) and a combination of Ca, alkali, and ethanol (KGM and ALG/KGM films).
View Article and Find Full Text PDFThis study evaluated the physicochemical and morphological properties of pectin and chitosan particles combined with sugarcane vinasse for soil fertilization applications. Particles were obtained by adding the biopolymeric solutions (pectin or chitosan solution) dropwise into the crosslinking solutions (calcium chloride 1% in ethanolic solution or tripolyphosphate 5% aqueous solution) followed by drying. Vinasse enhanced pectin gel stability improving pectin/vinasse particle properties.
View Article and Find Full Text PDFThe study aims to describe the tissue plasticity of MTJ through the morphological analysis of MTJ soleus in ovariectomized aged female Wistar rats submitted to aquatic training. Forty aged Wistar rats, 1 year and 2 months of age, were divided into four groups: sedentary (S), trained (T), ovariectomized (O), and trained/ovariectomized (OT). Employing the transmission electron microscopy, the ultrastructural and morphometric elements were revealed.
View Article and Find Full Text PDFEven though contamination by bacteria and wild yeasts are frequently observed during fuel ethanol fermentation, our knowledge regarding the effects of both contaminants together is very limited, especially considering that the must composition can vary from exclusively sugarcane juice to a mixture of molasses and juice, affecting the microbial development. Here we studied the effects of the feedstock (sugarcane juice and molasses) and the co-culture of Lactobacillus fermentum and a wild Saccharomyces cerevisiae strain (rough colony and pseudohyphae) in single and multiple-batch fermentation trials with an industrial strain of S. cerevisiae (PE-2) as starter yeast.
View Article and Find Full Text PDFUnlabelled: Fermentation is one of the most critical steps of the fuel ethanol production and it is directly influenced by the fermentation system, selected yeast, and bacterial contamination, especially from the genus Lactobacillus. To control the contamination, the industry applies antibiotics and biocides; however, these substances can result in an increased cost and environmental problems. The use of the acid treatment of cells (water-diluted sulphuric acid, adjusted to pH 2·0-2·5) between the fermentation cycles is not always effective to combat the bacterial contamination.
View Article and Find Full Text PDF