Detecting RNA molecules within their natural environment inside intact arthropods has long been challenging, particularly in small organisms covered by a tanned and pigmented cuticle. Here, we have developed a methodology that enables high-resolution analysis of the spatial distribution of transcripts of interest without having to dissect tiny organs or tissues, thereby preserving their integrity. We have combined an in situ amplification approach based on hybridization chain reaction, which enhances the signal-to-noise ratio, and a clearing approach that allows the visualization of inner organs beneath the cuticle.
View Article and Find Full Text PDFUnderstanding α-synuclein aggregation is crucial in the context of Parkinson's disease. The objective of this study was to investigate the influence of aggregation induced by preformed seeding on the volume of oligomers during the early stages, using a label-free, single-molecule characterization approach. By utilizing nanopipettes of varying sizes, the volume of the oligomers can be calculated from the amplitude of the current blockade and pipette geometry.
View Article and Find Full Text PDFTo avoid the activation of plant defenses and ensure sustained feeding, aphids are assumed to use their mouthparts to deliver effectors into plant cells. A recent study has shown that effectors detected near feeding sites are differentially distributed in plant tissues. However, the precise process of effector delivery into specific plant compartments is unknown.
View Article and Find Full Text PDFBMC Genomics
April 2021
Background: Aedes aegypti mosquito, the principal global vector of arboviral diseases, lays eggs and undergoes larval and pupal development to become adult mosquitoes in fresh water (FW). It has recently been observed to develop in coastal brackish water (BW) habitats of up to 50% sea water, and such salinity tolerance shown to be an inheritable trait. Genomics of salinity tolerance in Ae.
View Article and Find Full Text PDFBackground: Identifying new sources of disease resistance and the corresponding underlying resistance mechanisms remains very challenging, particularly in Monocots. Moreover, the modification of most disease resistance pathways made so far is detrimental to tolerance to abiotic stresses such as drought. This is largely due to negative cross-talks between disease resistance and abiotic stress tolerance signaling pathways.
View Article and Find Full Text PDF