Publications by authors named "B Cathala"

The study focus is the valorization of banana agriculture by products by the extraction and derivatization of cellulose and its incorporation in formulations to produce superabsorbent materials endowed with high water absorption performances. The extracted cellulose (BP) was subjected to a controlled oxidation by sodium periodate to convert it to cellulose dialdehyde (DAC) with controlled aldehyde content. The cellulosic materials were incorporated into a suspension containing acrylic acid (AA) and itaconic acid (IA) to produce composite hybrid hydrogels (SA-BP/SA-DAC) by radical chain polymerization in water, using N,N-methylene-bis-acrylamide (MBA) as a cross-linking agent and potassium persulfate (KPS) as an initiator.

View Article and Find Full Text PDF
Article Synopsis
  • Lytic polysaccharide monooxygenases (LPMOs) are important enzymes for breaking down biomass, but their exact functioning and interaction with cellulose’s structure are not fully understood.
  • This study looked at two LPMOs from the fungus Podospora anserina and their effects on different forms of cellulose, including cellulose I, II, III, and amorphous cellulose.
  • Results showed that both LPMOs were effective in altering cellulose structures, with a notable reduction in molar mass for cellulose I, and they increased cellulose's accessibility for further processing, which could aid in producing bio-based materials.
View Article and Find Full Text PDF

The development of fully biobased hydrogels obtained by simple routes and in the absence of toxic or environmentally harmful reagents is a major challenge in meeting new societal demands. In this work, we discuss the development of hydrogels made from cellulose nanocrystals (CNCs) and xyloglucan (XG), two non-toxic, renewable, and biobased components. We present three strategies to fine-tune the functional properties.

View Article and Find Full Text PDF
Article Synopsis
  • The hydrostatic skeleton of plants is formed by pressurized cells with strong walls, which rely on RAPID ALKALINIZATION FACTOR (RALF) peptides for assembly and expansion.
  • The RALF22 peptide plays a key role in root hair cell expansion by compacting pectin polymers and forming a complex with other proteins, triggering adaptive cellular responses.
  • This study reveals that RALF peptides serve both structural and signaling functions in plant cell wall organization, suggesting a broader application in various plant cell types.
View Article and Find Full Text PDF