We have investigated the binding site of the subtype specific antagonist SR 144528, (N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2. 1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methoxybenzyl)- pyrazo le-3-carboxamide) on the human cannabinoid CB(2) receptor based on functional studies with mutated receptors.
View Article and Find Full Text PDFThe G protein-coupled cannabinoid receptor subtypes CB1 and CB2 have been cloned from several species. The CB1 receptor is highly conserved across species, whereas the CB2 receptor shows considerable cross-species variations. The two human receptors share only 44% overall identity, ranging from 35% to 82% in the transmembrane regions.
View Article and Find Full Text PDFIt has long been established that the cannabinoid CB1 receptor transduces signals through a pertussis toxin-sensitive Gi/Go inhibitory pathway. Although there have been reports that the cannabinoid CB1 receptor can also mediate an increase in cyclic AMP levels, in most cases the presence of an adenylyl cyclase costimulant or the use of very high amounts of agonist was necessary. Here, we present evidence for dual coupling of the cannabinoid CB receptor to the classical pathway and to a pertussis toxin-insensitive adenylyl cyclase stimulatory pathway initiated with low quantities of agonist in the absence of any costimulant.
View Article and Find Full Text PDFIn the present report, we investigated in detail the effects of SR 144528, a selective antagonist of the peripheral cannabinoid receptor (CB2), on two well-characterized functions mediated by CB2: the induction of the early response gene krox24 and the inhibition of adenylyl cyclase. We generated Chinese hamster ovary cells doubly transfected with human CB2 and a luciferase reporter gene linked to either the murine krox24 regulatory sequence or multiple cAMP responsive elements. Our results show that (1) SR 144528 antagonizes the effect of receptor agonists-it inhibits the krox24 reporter activity and prevents the inhibition of forskolin-induced cAMP reporter activity mediated by CP 55,940; (2) CB2 is autoactivated-CB2 mediates signaling in the absence of ligand, and this basal activity is reduced by pretreating the cells with pertussis toxin; (3) SR 144528 is an inverse agonist-it reproduces the effects of pertussis toxin; and (4) inhibition of precoupled CB2 by a long-term pretreatment of cells with SR 144528 potentiates krox24 response to cannabinoid receptor agonists and restores activation of adenylyl cyclase.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
February 1998
Based on both binding and functional data, this study introduces SR 144528 as the first, highly potent, selective and orally active antagonist for the CB2 receptor. This compound which displays subnanomolar affinity (Ki = 0.6 nM) for both the rat spleen and cloned human CB2 receptors has a 700-fold lower affinity (Ki = 400 nM) for both the rat brain and cloned human CB1 receptors.
View Article and Find Full Text PDF