Using an 185-kg NaI[Tl] array, COHERENT has measured the inclusive electron-neutrino charged-current cross section on ^{127}I with pion decay-at-rest neutrinos produced by the Spallation Neutron Source at Oak Ridge National Laboratory. Iodine is one the heaviest targets for which low-energy (≤50 MeV) inelastic neutrino-nucleus processes have been measured, and this is the first measurement of its inclusive cross section. After a five-year detector exposure, COHERENT reports a flux-averaged cross section for electron neutrinos of 9.
View Article and Find Full Text PDFThe COHERENT Collaboration searched for scalar dark matter particles produced at the Spallation Neutron Source with masses between 1 and 220 MeV/c^{2} using a CsI[Na] scintillation detector sensitive to nuclear recoils above 9 keV_{nr}. No evidence for dark matter is found and we thus place limits on allowed parameter space. With this low-threshold detector, we are sensitive to coherent elastic scattering between dark matter and nuclei.
View Article and Find Full Text PDFWe measured the cross section of coherent elastic neutrino-nucleus scattering (CEvNS) using a CsI[Na] scintillating crystal in a high flux of neutrinos produced at the Spallation Neutron Source at Oak Ridge National Laboratory. New data collected before detector decommissioning have more than doubled the dataset since the first observation of CEvNS, achieved with this detector. Systematic uncertainties have also been reduced with an updated quenching model, allowing for improved precision.
View Article and Find Full Text PDFWe report the first measurement of coherent elastic neutrino-nucleus scattering (CEvNS) on argon using a liquid argon detector at the Oak Ridge National Laboratory Spallation Neutron Source. Two independent analyses prefer CEvNS over the background-only null hypothesis with greater than 3σ significance. The measured cross section, averaged over the incident neutrino flux, is (2.
View Article and Find Full Text PDFThe Neutron Scatter Camera (NSC) is a neutron spectrometer and imager that has been developed and improved by the Sandia National Laboratories for several years. Built for special nuclear material searches, the instrument was configured by the design to reconstruct neutron sources within the fission energy range 1-10 MeV. In this work, we present modifications that attempt to extend the NSC sensitivity to neutron energies in the range ∼10-200 MeV and discuss the corresponding consequences for the event processing.
View Article and Find Full Text PDF