AAPS PharmSciTech
December 2011
The study reports on the drug release behavior of a potent synthetic somatostatin analogue, octreotide acetate, from biocompatible and biodegradable microspheres composed of poly-lactic-co-glycolic acid (PLGA) following a single intramuscular depot injection. The serum octreotide levels of three Oakwood Laboratories formulations and one Sandostatin LAR(®) formulation were compared. Three formulations of octreotide acetate-loaded PLGA microspheres were prepared by a solvent extraction and evaporation procedure using PLGA polymers with different molecular weights.
View Article and Find Full Text PDFThe purpose of the present investigation was to assess the peptide related substances or impurities formed during incubation of drug loaded poly-(D,L-lactide-co-glycolide) (PLGA) and poly-(D,L-lactide) (PLA) microspheres under in vivo conditions. Sprague-Dawley rats were injected with separate batches of octreotide microspheres prepared by either an oil/water or oil/oil dispersion technique. At specified time points (days 14, 22, 30, and 41), animals were sacrificed and microsphere particles were recovered from the subcutaneous injection sites.
View Article and Find Full Text PDFSince acylated peptide impurities were isolated from octreotide microspheres following incubation in an in vivo environment, the present investigation was undertaken to determine the dosage form dynamics responsible for facilitating acylation. In particular, microsphere batches made with poly(L-lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) 85:15 were studied for in vitro drug release, mass balance relationships, mass loss behavior, hydration uptake, and solid-state stability. Furthermore, native octreotide was incubated in a varying pH stability model (heat treated lactic acid solutions 42.
View Article and Find Full Text PDFThe purpose of the present study was to characterize the in vivo release kinetics of octreotide acetate from microsphere formulations designed to minimize peptide acylation and improve drug stability. Microspheres were prepared by a conventional oil/water (o/w) method or an experimental oil/oil (o/o) dispersion technique. The dosage forms were administered subcutaneously to a rat animal model, and serum samples were analyzed by radioimmunoassay over a 2-month period.
View Article and Find Full Text PDFThe purpose of this study was to prepare poly(ethylene glycol) (PEG)ylated octreotide and investigate the stability against acylation by polyester polymers such as poly(lactic acid) and poly(lactic-co-glycolic acid). Octreotide was modified by reaction with monomethoxy PEG-propionaldehyde (molecular weight 5,000) in the presence of sodium cyanoborohydride. The mono-PEGylated fraction was isolated by reversed-phase high-performance liquid chromatography (HPLC) and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).
View Article and Find Full Text PDF