Publications by authors named "B C Sturgill"

Chronic implantation of intracortical microelectrode arrays (MEAs) capable of recording from individual neurons can be used for the development of brain-machine interfaces. However, these devices show reduced recording capabilities under chronic conditions due, at least in part, to the brain's foreign body response (FBR). This creates a need for MEAs that can minimize the FBR to possibly enable long-term recording.

View Article and Find Full Text PDF

Intracortical microelectrode arrays (MEAs) are used for recording neural signals. However, indwelling devices result in chronic neuroinflammation, which leads to decreased recording performance through degradation of the device and surrounding tissue. Coating the MEAs with bioactive molecules is being explored to mitigate neuroinflammation.

View Article and Find Full Text PDF

Intracortical microelectrode arrays (MEAs) are used to record neural activity. However, their implantation initiates a neuroinflammatory cascade, involving the accumulation of reactive oxygen species, leading to interface failure. Here, we coated commercially-available MEAs with Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP), to mitigate oxidative stress.

View Article and Find Full Text PDF

Intracortical microelectrode arrays (MEAs) can be used in a range of applications, from basic neuroscience research to providing an intimate interface with the brain as part of a brain-computer interface (BCI) system aimed at restoring function for people living with neurological disorders or injuries. Unfortunately, MEAs tend to fail prematurely, leading to a loss in functionality for many applications. An important contributing factor in MEA failure is oxidative stress resulting from chronically inflammatory-activated microglia and macrophages releasing reactive oxygen species (ROS) around the implant site.

View Article and Find Full Text PDF

Implantable microelectrode arrays (MEAs) enable the recording of electrical activity of cortical neurons, allowing the development of brain-machine interfaces. However, MEAs show reduced recording capabilities under chronic conditions, prompting the development of novel MEAs that can improve long-term performance. Conventional planar, silicon-based devices and ultra-thin amorphous silicon carbide (a-SiC) MEAs were implanted in the motor cortex of female Sprague-Dawley rats, and weekly anesthetized recordings were made for 16 weeks after implantation.

View Article and Find Full Text PDF