Publications by authors named "B C Guard"

The long-term impact of treatment of dogs with steroid-responsive enteropathy (SRE) on the fecal microbiome and metabolome has not been investigated. Therefore, this study aimed to evaluate the fecal microbiome and metabolome of dogs with SRE before, during, and following treatment with standard immunosuppressive therapy and an elimination diet. We retrospectively selected samples from 9 dogs with SRE enrolled in a previous clinical trial, which received treatment for 8 weeks, and had achieved remission as indicated by the post-treatment clinical scores.

View Article and Find Full Text PDF

The gut microbiota plays a crucial role in several physiologic functions of the host. In humans and animals, manipulation of the intestinal microbiota by oral administration of probiotic lactic acid bacteria plays a significant role in modulating the immune system. The aim of this study was to evaluate the safety of the probiotic mixture Slab51® and the capacity of this mixture to stimulate immune function in healthy dogs.

View Article and Find Full Text PDF

Background: Metronidazole has a substantial impact on the gut microbiome. However, the recovery of the microbiome after discontinuation of administration, and the metabolic consequences of such alterations have not been investigated to date.

Objectives: To describe the impact of 14-day metronidazole administration, alone or in combination with a hydrolyzed protein diet, on fecal microbiome, metabolome, bile acids (BAs), and lactate production, and on serum metabolome in healthy dogs.

View Article and Find Full Text PDF

The aim was to characterize differences in fecal consistency, and fecal microbiota and metabolome profiles in dogs with acute diarrhea (AD) treated with either fecal microbiota transplantation as enema (FMT; = 11) or oral metronidazole (MET; = 7) for 7 days. On days 0, 7, and 28 fecal samples were obtained. Fecal samples from healthy dogs (HC; = 14) were used for comparison.

View Article and Find Full Text PDF

The intestinal microbiota plays an important role in health and disease and produces, through fermentative reactions, several metabolic products, such as lactate, that can affect the host. The microbiota also interacts with and metabolizes compounds produced by the host, such as primary bile acids. Lactate and bile acids (BA) are of particular interest in gastrointestinal diseases because they have been associated with metabolic acidosis and bile acid diarrhea, respectively.

View Article and Find Full Text PDF