Publications by authors named "B Burt-Pichat"

Osteopontin (OPN) and Bone Sialoprotein (BSP), abundantly expressed by osteoblasts and osteoclasts, appear to have important, partly overlapping functions in bone. In gene-knockout (KO, -/-) models of either protein and their double (D)KO in the same CD1/129 genetic background, we analyzed the morphology, matrix characteristics, and biomechanical properties of femur bone in 2 and 4 month old, male and female mice. OPN mice display inconsistent, perhaps localized hypermineralization, while the BSP are hypomineralized throughout ages and sexes, and the low mineralization of young DKO mice recovers with age.

View Article and Find Full Text PDF

After internal contamination, uranium rapidly distributes in the body; up to 20 % of the initial dose is retained in the skeleton, where it remains for years. Several studies suggest that uranium has a deleterious effect on the bone cell system, but little is known regarding the mechanisms leading to accumulation of uranium in bone tissue. We have performed synchrotron radiation-based micro-X-ray fluorescence (SR μ-XRF) studies to assess the initial distribution of uranium within cortical and trabecular bones in contaminated rats' femurs at the micrometer scale.

View Article and Find Full Text PDF

In humans, the middle ear contains a chain of three ossicles with a major highly specific mechanical property (transmission of vibrations) and modeling that stops rapidly after birth. Their bone quality has been rarely studied either in noninflammatory ossicles or in those from ears with chronic inflammation. Our primary goal was to assess bone microarchitecture, morphology and variables reflecting bone quality from incuses, in comparison with those from human femoral cortical bone as controls.

View Article and Find Full Text PDF

Previous studies have shown that microdamage accumulates in bone as a result of physiological loading and occurs naturally in human trabecular bone. The purpose of this study was to determine the factors associated with pre-existing microdamage in human vertebral trabecular bone, namely age, architecture, hardness, mineral and organic matrix. Trabecular bone cores were collected from human L2 vertebrae (n = 53) from donors 54-95 years of age (22 men and 30 women, 1 unknown) and previous cited parameters were evaluated.

View Article and Find Full Text PDF

The purpose of this study was to adapt various staining methods for the detection of microdamage in human bone, while preserving tetracycline labels. We describe two staining methods using calcein green and xylenol orange, first developed in ewe bone samples and validated in human trabecular bone samples. In ewe bones, we found that calcein green at 0.

View Article and Find Full Text PDF