We identify thermal magnetic field fluctuations, caused by thermal electron motion ("Johnson noise") in electrically conductive materials, as a potential resolution limit in transmission electron microscopy with a phase plate. Specifically, resolution loss can occur if the electron diffraction pattern is magnified to extend phase contrast to lower spatial frequencies, and if conductive materials are placed too close to the electron beam. While our initial implementation of a laser phase plate (LPP) was significantly affected by these factors, a redesign eliminated the problem and brought the performance close to the expected level.
View Article and Find Full Text PDFWe identify thermal magnetic field fluctuations, caused by thermal electron motion ("Johnson noise") in electrically conductive materials, as a potential resolution limit in transmission electron microscopy with a phase plate. Specifically, resolution loss can occur if the electron diffraction pattern is magnified to extend phase contrast to lower spatial frequencies, and if conductive materials are placed too close to the electron beam. While our initial implementation of a laser phase plate (LPP) was significantly affected by these factors, a redesign eliminated the problem and brought the performance close to the expected level.
View Article and Find Full Text PDFMicroED has recently emerged as a powerful method for the analysis of biological structures at atomic resolution. This technique has been largely limited to protein nanocrystals which grow either as needles or plates measuring only a few hundred nanometers in thickness. Furthermore, traditional microED data processing uses established X-ray crystallography software that is not optimized for handling compound effects that are unique to electron diffraction data.
View Article and Find Full Text PDFThe Volta Phase Plate (VPP) consists of a heated, thin film that is placed in the same plane as the focused diffraction pattern of an electron microscope. A change in surface potential develops at the point irradiated by the intense, unscattered electron beam, and this altered surface potential produces, in turn, a phase shift between the unscattered and scattered parts of the electron wave. While the VPP thus increases the image contrast for weak-phase objects at low spatial frequencies, we report here that it also leads to the loss of an increasing fraction of the signal at higher resolution.
View Article and Find Full Text PDFRecent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images.
View Article and Find Full Text PDF