J Mech Behav Biomed Mater
March 2023
The present paper provides a simplified model for compact bone behavior by accounting for bone fluid flow coupled to the elasticity of the porous structure. The lumped model considers the bone material as a layered poroelastic structure and predicts normal pressure versus displacement, i.e, a stress-strain curve.
View Article and Find Full Text PDFPurpose: Pulse wave velocity (PWV) is an indicator of arterial stiffness used in the prediction of cardiovascular disease such as atherosclerosis. Non-invasive methods performed with ultrasound probes allow one to compute PWV and aortic stiffness through the measurement of the aortic diameter (D) and blood flow velocity (U) with the lnD-U method. This technique based on in vivo acquisitions lacks validation since the aortic elasticity modulus cannot be verified with mechanical strength tests.
View Article and Find Full Text PDFVessel wall material parameters are important in biomechanical research. The purpose of this study was to identify the material parameters of two porcine thoracic aortic segments and verify the accuracy of the identification results with uniaxial tensile testing. Principal component analysis (PCA) was used to reduce the dimensionality of the stress matrix.
View Article and Find Full Text PDFIn vitro aortic flow simulators allow studying hemodynamics with a wider range of flow visualization techniques compared to in vivo medical imaging and without the limitations of invasive examinations. This work aims to develop an experimental bench to emulate the pulsatile circulation in a realistic aortic phantom. To mimic the blood shear thinning behavior, a non-Newtonian aqueous solution is prepared with glycerin and xanthan gum polymer.
View Article and Find Full Text PDFThis work aims to provide a contribution to determine a proper model for the study of fluid film lubrication for the reduction of knee prostheses failure due to polyethylene wear. The Phan-Thien and Tanner (PTT) rheological law and the elastic deformation of the articular surfaces were considered in this modeling. The governing equations were solved numerically for different geometries and different Weissenberg numbers.
View Article and Find Full Text PDF