One of the most challenging problems in developmental neurosciences is to understand the establishment and maintenance of specific membrane contacts between axonal, dendritic, and glial processes in the neuropils, which eventually secure neuronal connectivity. However, underlying cell recognition events are pivotal in other tissues as well. This brief review focuses on the pleiotropic functions of a small, evolutionarily conserved group of proteins of the immunoglobulin superfamily involved in cell recognition.
View Article and Find Full Text PDFThe nature of mitochondrial DNA heteroplasmy is still unclear. It could either be caused by two mitochondrial DNA (mtDNA) haplotypes coexisting within a single cell or by an admixture of homoplasmic cells, each of which contains only one type of mtDNA molecule. To address this question, single lymphocytes were separated by flow cytometry assisted cell sorting and analyzed by cycle sequencing or minisequencing.
View Article and Find Full Text PDFThe polynucleate myotubes of vertebrates and invertebrates form by fusion of myoblasts. We report the involvement of the Drosophila melanogaster Roughest (Rst) protein as a new membrane-spanning component in this process. Rst is strongly expressed in mesodermal tissues during embryogenesis, but rst null mutants display only subtle embryonic phenotypes.
View Article and Find Full Text PDF