The discovery of chiral amino alcohols derived from our previously disclosed clinical LTA4H inhibitor is described. In a biochemical assay, their optical antipodes showed similar potencies, which could be rationalized by the cocrystal structures of these compounds bound to LTA4H. Despite comparable stabilities in liver microsomes, they showed distinct in vivo PK properties.
View Article and Find Full Text PDFThe cytosolic metalloenzyme leukotriene A hydrolase (LTA4H) is the final and rate-limiting enzyme in the biosynthesis of pro-inflammatory leukotriene B (LTB). Preclinical studies have validated this enzyme as an attractive drug target in chronic inflammatory diseases. Despite several attempts, no LTA4H inhibitor has reached the market, yet.
View Article and Find Full Text PDFLeukotriene A4 Hydrolase (LTA4H) is a bifunctional zinc metalloenzyme that comprises both epoxide hydrolase and aminopeptidase activity, exerted by two overlapping catalytic sites. The epoxide hydrolase function of the enzyme catalyzes the biosynthesis of the pro-inflammatory lipid mediator leukotriene (LT) B4. Recent literature suggests that the aminopeptidase function of LTA4H is responsible for degradation of the tripeptide Pro-Gly-Pro (PGP) for which neutrophil chemotactic activity has been postulated.
View Article and Find Full Text PDFRational: Homeostasis of vascular barriers depends upon sphingosine 1-phosphate (S1P) signaling via the S1P1 receptor. Accordingly, S1P1 competitive antagonism is known to reduce vascular barrier integrity with still unclear pathophysiological consequences. This was explored in the present study using NIBR-0213, a potent and selective S1P1 competitive antagonist.
View Article and Find Full Text PDFA prodrug approach to optimize the oral exposure of a series of sphingosine 1-phosphate receptor 1 (S1P(1)) antagonists for chronic efficacy studies led to the discovery of (S)-2-{[3'-(4-chloro-2,5-dimethylphenylsulfonylamino)-3,5-dimethylbiphenyl-4-carbonyl]methylamino}-4-dimethylaminobutyric acid methyl ester 14. Methyl ester prodrug 14 is hydrolyzed in vivo to the corresponding carboxylic acid 15, a potent and selective S1P(1) antagonist. Oral administration of the prodrug 14 induces sustained peripheral blood lymphocyte reduction in rats.
View Article and Find Full Text PDF