Publications by authors named "B Bohne"

From our permanent collection of plastic-embedded flat preparations of chinchilla cochleae, 22 controls and 199 ears from noise-exposed animals were used to determine when, postexposure, hair cell (HC) and supporting cell (SC) degeneration were completed. The exposed ears were divided into four groups based on exposure parameters: 0.5- or 4-kHz octave band of noise at moderate (M) or high (H) intensities.

View Article and Find Full Text PDF

Background: Determination of auditory function is a fundamental part of a complete neurologic examination. Disability from permanent hearing loss is common in the general population. Current bedside auditory tests are unreliable and cumbersome.

View Article and Find Full Text PDF

In a previous study, we examined the relation between total energy in a noise exposure and the percentage losses of outer (OHC) and inner (IHC) hair cells in the basal and apical halves of 607 chinchilla cochleae [Harding, G.W., Bohne, B.

View Article and Find Full Text PDF

Infrasound (i.e., <20 Hz for humans; <100 Hz for chinchillas) is not audible, but exposure to high-levels of infrasound will produce large movements of cochlear fluids.

View Article and Find Full Text PDF

An octave band of noise (OBN) delivers fairly uniform acoustic energy over a specific range of frequencies. Above and below this range, energy is at least 30 dB SPL less than that within the OBN. When the ear is exposed to an OBN, hair-cell loss often occurs outside the octave band.

View Article and Find Full Text PDF