Publications by authors named "B Binz"

High pressure studies in MnSi suggest the existence of a non-Fermi liquid state without quantum criticality. The observation of partial magnetic order in a small pocket of the pressure versus temperature phase diagram of MnSi has additionally inspired several proposals of complex spin textures in chiral magnets. We used neutron scattering to observe the formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortices, under applied magnetic fields in metallic and semiconducting B20 compounds.

View Article and Find Full Text PDF

Recent small angle neutron scattering suggests that the spin structure in the A phase of MnSi is a so-called triple-Q state, i.e., a superposition of three helices under 120 degrees.

View Article and Find Full Text PDF

In the fermionic Hubbard model, doubly occupied states have an exponentially large lifetime for strong repulsive interactions U. We show that this property can be used to prepare a metastable s-wave superfluid state for fermionic atoms in optical lattices described by a large-U Hubbard model. When an initial band-insulating state is expanded, the doubly occupied sites Bose condense.

View Article and Find Full Text PDF

Systems lacking inversion symmetry, such as selected three-dimensional compounds, multilayers and surfaces support Dzyaloshinsky-Moriya (DM) spin-orbit interactions. In recent years DM interactions have attracted great interest, because they may stabilize magnetic structures with a unique chirality and non-trivial topology. The inherent coupling between the various properties provided by DM interactions is potentially relevant for a variety of applications including, for instance, multiferroic and spintronic devices.

View Article and Find Full Text PDF

Skyrmions represent topologically stable field configurations with particle-like properties. We used neutron scattering to observe the spontaneous formation of a two-dimensional lattice of skyrmion lines, a type of magnetic vortex, in the chiral itinerant-electron magnet MnSi. The skyrmion lattice stabilizes at the border between paramagnetism and long-range helimagnetic order perpendicular to a small applied magnetic field regardless of the direction of the magnetic field relative to the atomic lattice.

View Article and Find Full Text PDF