Here, we report the discovery of a new beny-like virus in winter wheat (Triticum aestivum L.) plants collected in the Brittany and Burgundy regions of France in spring 2022, using a high-throughput sequencing approach. A complete genome sequence, comprising two genomic RNAs of 6734 nt (RNA1) and 4856 nt (RNA2) was obtained.
View Article and Find Full Text PDFEpigenetic gene silencing induced by expanded repeats can cause diverse phenotypes ranging from severe growth defects in plants to genetic diseases such as Friedreich's ataxia in humans. The molecular mechanisms underlying repeat expansion-induced epigenetic silencing remain largely unknown. Using a plant model with a temperature-sensitive phenotype, we have previously shown that expanded repeats can induce small RNAs, which in turn can lead to epigenetic silencing through the RNA-dependent DNA methylation pathway.
View Article and Find Full Text PDFGiven the increase in students with learning disabilities entering university, we investigated a broader group-students with a history of reading difficulties (HRD)-who are known to be at risk of academic struggles. We identified the self-reported reading challenges and strategies of university students with HRD ( = 49) and those with no history of reading difficulties (NRD; = 88) and examined group differences and relations with first-year grade point average (GPA). Students with HRD reported more difficulties with perceived reading comprehension, concentration, and reading speed than students with NRD.
View Article and Find Full Text PDFNumerous proteins are sumoylated in normally growing yeast and SUMO conjugation levels rise upon exposure to several stress conditions. We observe high levels of sumoylation also during early exponential growth and when nutrient-rich medium is used. However, we find that reduced sumoylation (∼75% less than normal) is remarkably well-tolerated, with no apparent growth defects under nonstress conditions or under osmotic, oxidative, or ethanol stresses.
View Article and Find Full Text PDFTranscription-related proteins are frequently identified as targets of sumoylation, including multiple subunits of the RNA polymerase II (RNAPII) general transcription factors (GTFs). However, it is not known how sumoylation affects GTFs or whether they are sumoylated when they assemble at promoters to facilitate RNAPII recruitment and transcription initiation. To explore how sumoylation can regulate transcription genome-wide, we performed SUMO ChIP-seq in yeast and found, in agreement with others, that most chromatin-associated sumoylated proteins are detected at genes encoding tRNAs and ribosomal proteins (RPGs).
View Article and Find Full Text PDF