At Budker Institute of Nuclear Physics, epithermal neutron source for neutron-capture therapy was built and neutron generation was realized. Source is based on tandem accelerator and uses near-threshold neutron generation from the reaction (7)Li(p,n)(7)Be. The paper describes target optimization through the numerical simulation of proton, neutron and gamma transport by Monte Carlo method (PRIZMA code).
View Article and Find Full Text PDFAppl Radiat Isot
December 2011
New technical solution is proposed for using the time-of-flight technique to measure neutron spectra on VITA-facility. During 200 ns the energy of protons increases from 1.865 up to 1.
View Article and Find Full Text PDFAn innovative accelerator-based neutron source for BNCT has just started operation at the Budker Institute of Nuclear Physics, Novosibirsk. One of the main elements of the facility is a lithium target producing neutrons via the threshold (7)Li(p,n)(7)Be reaction at 25 kW proton beam with energies of 1.915 MeV or 2.
View Article and Find Full Text PDFPilot innovative facility for neutron capture therapy was built at Budker Institute of Nuclear Physics, Novosibirsk. This facility is based on a compact vacuum insulation tandem accelerator designed to produce proton current up to 10 mA. Epithermal neutrons are proposed to be generated by 1.
View Article and Find Full Text PDFPilot innovative accelerator-based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. One of the main elements of the facility is lithium target, that produces neutrons via threshold (7)Li(p,n)(7)Be reaction at 25 kW proton beam with energies 1.915 or 2.
View Article and Find Full Text PDF