Inflammatory responses are required to block pathogen infection but can also lead to hypersensitivity and chronic inflammation. Barrier tissues actively release IL-33, ATP, and other alarmins during cell stress, helping identify pathogenic stimuli. However, it is unclear how these signals are integrated.
View Article and Find Full Text PDFStatins are HMG-CoA reductase inhibitors prescribed for lowering cholesterol. They can also inhibit inflammatory responses by suppressing isoprenylation of small G proteins. Consistent with this, we previously found that fluvastatin suppresses IgE-mediated mast cell function.
View Article and Find Full Text PDFMast cells, well established effectors in allergic disease, can be activated by numerous stimuli. We previously found that the Fyn-Stat5B pathway is critical for FcεRI-stimulated mast cell function. Because IgG receptors employ similar signaling pathways, we investigated Fyn-Stat5B function downstream of FcγR.
View Article and Find Full Text PDFStatin drugs are widely employed in the clinic to reduce serum cholesterol. Because of their hydroxymethylglutaryl coenzyme A reductase antagonism, statins also reduce isoprenyl lipids necessary for the membrane anchorage and signaling of small G-proteins in the Ras superfamily. We previously found that statins suppress immunoglobulin E (IgE)-mediated mast cell activation, suggesting these drugs might be useful in treating allergic disease.
View Article and Find Full Text PDFSepsis has a well-studied inflammatory phase, with a less-understood secondary immunosuppressive phase. Elevated blood lactate and slow lactate clearance are associated with mortality; however, regulatory roles are unknown. We hypothesized that lactic acid (LA) contributes to the late phase and is not solely a consequence of bacterial infection.
View Article and Find Full Text PDF