Publications by authors named "B Banoth"

During influenza virus entry, the hemagglutinin (HA) protein binds receptors and causes membrane fusion after endosomal acid activation. To improve vaccine efficiency and pandemic risk assessment for currently-dominant H3N2 influenza viruses, we investigated HA stability of 6 vaccine reference viruses and 42 circulating viruses. Recent vaccine reference viruses had destabilized HA proteins due to egg-adaptive mutation HA1-L194P.

View Article and Find Full Text PDF

Background: Acute exacerbation of asthma is a common condition leading to emergency visits. Prednisolone is a commonly prescribed drug in the standard management of acute exacerbation of asthma along with other drugs. This study was planned to see the efficacy of oral dexamethasone when compared with oral prednisolone in the management of acute exacerbation of asthma.

View Article and Find Full Text PDF

Understanding how animal influenza A viruses (IAVs) acquire airborne transmissibility in humans and ferrets is needed to prepare for and respond to pandemics. Here, we investigated in ferrets the replication and transmission of swine H1N1 isolates P4 and G15, whose majority population had decreased polymerase activity and poor hemagglutinin (HA) stability, respectively. For both isolates, a minor variant was selected and transmitted in ferrets.

View Article and Find Full Text PDF

Noncanonical inflammasome activation by cytosolic lipopolysaccharide (LPS) is a critical component of the host response to Gram-negative bacteria. Cytosolic LPS recognition in macrophages is preceded by a Toll-like receptor (TLR) priming signal required to induce transcription of inflammasome components and facilitate the metabolic reprograming that fuels the inflammatory response. Using a genome-scale arrayed siRNA screen to find inflammasome regulators in mouse macrophages, we identified the mitochondrial enzyme nucleoside diphosphate kinase D (NDPK-D) as a regulator of both noncanonical and canonical inflammasomes.

View Article and Find Full Text PDF

Nuclear factor-kappa B (NF-κB) inducing kinase (NIK), a key component of the noncanonical NF-κB pathway, directs a range of physiological processes, such as lymphoid organogenesis, immune cell differentiation, and immune responses. Aberrant noncanonical NF-κΒ signaling also causes human ailments, including autoimmune and neoplastic diseases. As such, NIK is constitutively degraded in resting cells, and accumulates upon noncanonical NF-κB signaling.

View Article and Find Full Text PDF