Cell-free protein synthesis systems represent versatile tools for the synthesis and modification of human membrane proteins. In particular, eukaryotic cell-free systems provide a promising platform for their structural and functional characterization. Here, we present the cell-free synthesis of functional human epidermal growth factor receptor and its vIII deletion mutant in a microsome-containing system derived from cultured Sf21 cells.
View Article and Find Full Text PDFD(2)-like antagonists potentiate dopamine release. They also inhibit dopamine uptake by a mechanism yet to be clarified. Here, we monitored dopamine uptake in the striatum of anesthetized mice.
View Article and Find Full Text PDFBackground: Clinical treatments with typical antipsychotic drugs (APDs) are accompanied by extrapyramidal motor side-effects (EPS) such as hypokinesia and catalepsy. As little is known about electrophysiological substrates of such motor disturbances, we investigated the effects of a typical APD, alpha-flupentixol, on the motor behavior and the neuronal activity of the whole basal ganglia nuclei in the rat.
Methods And Findings: The motor behavior was examined by the open field actimeter and the neuronal activity of basal ganglia nuclei was investigated using extracellular single unit recordings on urethane anesthetized rats.
In Parkinson's disease dopamine depletion imbalances the two major output pathways of the striatum. L-DOPA replacement therapy is believed to correct this imbalance by providing effective D1 and D2 receptor stimulation to striatonigral and striatopallidal neurons, respectively. Here we tested this assumption in the rat model of Parkinsonism by monitoring the spike response of identified striatal neurons to cortical stimulation.
View Article and Find Full Text PDFStriatonigral and striatopallidal neurons form distinct populations of striatal projection neurons. Their discharge activity is imbalanced after dopaminergic degeneration in Parkinson's disease. Striatal projection neurons receive massive cortical excitatory inputs from bilateral intratelencephalic (IT) neurons projecting to both the ipsilateral and contralateral striatum and from collateral axons of ipsilateral neurons that send their main axon through the pyramidal tract (PT).
View Article and Find Full Text PDF