Publications by authors named "B Baggett"

Impaired pulmonary angiogenesis plays a pivotal role in the progression of pulmonary arterial hypertension (PAH) and patient mortality, yet the molecular mechanisms driving this process remain enigmatic. Our study uncovered a striking connection between mitochondrial dysfunction (MD), caused by a humanized mutation in the NFU1 gene, and severely disrupted pulmonary angiogenesis in adult lungs. Restoring the bioavailability of the NFU1 downstream target, lipoic acid (LA), alleviated MD and angiogenic deficiency and rescued the progressive PAH phenotype in the NFU1G206C model.

View Article and Find Full Text PDF

Progressive tissue remodeling after myocardial infarction (MI) promotes cardiac arrhythmias. This process is well studied in young animals, but little is known about pro-arrhythmic changes in aged animals. Senescent cells accumulate with age and accelerate age-associated diseases.

View Article and Find Full Text PDF

Cardiac arrhythmias significantly contribute to cardiovascular morbidity and mortality. The rabbit heart serves as an accepted model system for studying cardiac cell excitation and arrhythmogenicity. Accordingly, primary cultures of adult rabbit ventricular cardiomyocytes serve as a preferable model to study molecular mechanisms of human cardiac excitation.

View Article and Find Full Text PDF
Article Synopsis
  • The QT interval is a measure of heart's electrical activity, and previous studies linked genetic variants affecting it to LITAF, a protein involved in regulating cell function.
  • The research showed that LITAF enhances the activity of the Nav1.5 sodium channel, crucial for heart activity, by increasing its levels and interacting with the ubiquitin ligase NEDD4-2, which normally reduces Nav1.5.
  • LITAF overexpression leads to reduced NEDD4-2, increasing Nav1.5 on cell surfaces, and LITAF-knockout zebrafish exhibited changes in heart action potential duration, which aligns with findings from genome-wide studies on QT interval variations.
View Article and Find Full Text PDF