Purpose: To propose a methodology for integrating the out-of-field and imaging doses to the in-field dose received by radiotherapy (RT) patients. In addition, the impact of considering the total dose in planning and radiation-induced second malignancies (RISM) risk assessment will be evaluated in several scenarios comprising photon and proton treatments.
Methods: The total dose is the voxel-wise sum of the doses from the different radiation sources (accounting for the radiobiological effectiveness) produced during the whole RT chain.
Background: The risk of radiogenic cancer induction due to radiotherapy depends on the dose received by the patient's organs. Knowing the position of all organs is needed to assess this dose in a personalized way. However, radiotherapy planning computed tomography (pCT) scans contain truncated patient anatomy, limiting personalized dose evaluation.
View Article and Find Full Text PDFConsidering that cancer survival rates have been growing and that nearly two-thirds of those survivors were exposed to clinical radiation during its treatment, the study of long-term radiation effects, especially secondary cancer induction, has become increasingly important. To correctly assess this risk, knowing the dose to out-of-field organs is essential. As it has been reported, commercial treatment planning systems do not accurately calculate the dose far away from the border of the field; analytical dose estimation models may help this purpose.
View Article and Find Full Text PDF