Publications by authors named "B B Maranville"

The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr-doped (Bi,Sb) Te (CBST) grown on an uncompensated antiferromagnetic insulator Al-doped Cr O .

View Article and Find Full Text PDF

Understanding the interfacial structure-property relationship of complex fluid-fluid interfaces is increasingly important for guiding the formulation of systems with targeted interfacial properties, such as those found in multiphase complex fluids, biological systems, biopharmaceuticals formulations, and many consumer products. Mixed interfacial flow fields, typical of classical Langmuir trough experiments, introduce a complex interfacial flow history that complicates the study of interfacial properties of complex fluid interfaces. In this article, we describe the design, implementation, and validation of a new instrument capable of independent application of controlled interfacial dilation and shear kinematics on fluid interfaces.

View Article and Find Full Text PDF

In the analysis of neutron scattering measurements of condensed matter structure, it normally suffices to treat the incident and scattered neutron beams as if composed of incoherent distributions of plane waves with wavevectors of different magnitudes and directions that are taken to define an instrumental resolution. However, despite the wide-ranging applicability of this conventional treatment, there are cases, such as specular neutron reflectometry, in which the structural length scales of the scattering object require that the wavefunction of an individual neutron in the beam be described by a spatially localized packet - in particular with respect to the transverse extent of its wavefronts ( normal to the packet's mean direction of propagation). It is shown in the present work that neutron diffraction patterns observed for periodic transmission phase gratings, as well as specular reflection measurements from patterned thin films with repeat units of the order of micrometres, can be accurately described by associating an individual neutron with a wave packet and treating a beam as a collection of independent packets.

View Article and Find Full Text PDF

This paper presents the use of a stopped-flow small-angle neutron-scattering (SANS) sample environment to quickly mix liquid samples and study nanoscale kinetic processes on time scales of seconds to minutes. The stopped-flow sample environment uses commercially available syringe pumps to mix the desired volumes of liquid samples that are then injected through a dynamic mixer into a quartz glass cell in approximately 1 s. Time-resolved SANS data acquisition is synced with the sample mixing to follow the evolution of the nanostructure in solution after mixing.

View Article and Find Full Text PDF

We reveal the assembly of magnetite nanoparticles of sizes 5 nm, 15 nm and 25 nm from dilute water-based ferrofluids onto an amorphous magnetic template with out-of-plane anisotropy. From neutron reflectometry experiments we extract density profiles and show that the particles self-assemble into layers at the magnetic surface. The layers are extremely stable against cleaning and rinsing of the substrate.

View Article and Find Full Text PDF