DNA-aptamer-functionalized electrode arrays can provide an intriguing method for detecting pathogen-derived exometabolites. This work addresses the limitations of previous aptamer-based pathogen detection methods by introducing a novel surface design that bridges the gap between initial efforts in this area and the demands of a point-of-care device. Specifically, the use of a diblock copolymer coating on a high-density microelectrode array and Cu-mediated cross coupling reactions that allow for the exclusive functionalization of that coating by any electrode or set of electrodes in the array provides a device that is stable for 1 year and compatible with the multiplex detection of small-molecule targets.
View Article and Find Full Text PDFAdenosine-to-inosine (A-to-I) editing is one of the most widespread post-transcriptional RNA modifications and is catalyzed by adenosine deaminases acting on RNA (ADARs). Varying across tissue types, A-to-I editing is essential for numerous biological functions, and dysregulation leads to autoimmune and neurological disorders, as well as cancer. Recent evidence has also revealed a link between RNA localization and A-to-I editing, yet understanding of the mechanisms underlying this relationship and its biological impact remains limited.
View Article and Find Full Text PDFAdenosine-to-Inosine (A-to-I) editing is one of the most widespread post-transcriptional RNA modifications and is catalyzed by adenosine deaminases acting on RNA (ADARs). Varying across tissue types, A-to-I editing is essential for numerous biological functions and dysregulation leads to autoimmune and neurological disorders, as well as cancer. Recent evidence has also revealed a link between RNA localization and A-to-I editing, yet understanding of the mechanisms underlying this relationship and its biological impact remains limited.
View Article and Find Full Text PDFKey Clinical Message: We report a rare adverse event of transient perivascular inflammation of the carotid artery syndrome induced by granulocyte colony-stimulating factor injections. Recognition of this syndrome is important for physicians, to avoid the exposure of the causative medication, rule out differential diagnosis and delay the use of corticosteroids given the spontaneous improvement after discontinuation of the causative medication.
Abstract: A 73 year-old Caucasian woman presented with odynophagia, carotidynia, and fever 5 days following a granulocyte colony-stimulating factor (G-CSF) injection for chemotherapy-induced neutropenia in the setting of myelodysplastic syndrome.
Macropore formation and current facilitation are intriguing phenomena associated with ATP-gated P2X7 receptors (P2X7). Macropores are large pores formed in the cell membrane that allow the passage of large molecules. The precise mechanisms underlying macropore formation remain poorly understood, but recent evidence suggests two alternative pathways: a direct entry through the P2X7 pore itself, and an indirect pathway triggered by P2X7 activation involving additional proteins, such as TMEM16F channel/scramblase.
View Article and Find Full Text PDF