Front Bioeng Biotechnol
February 2023
Human pancreatic islets transplantation is an experimental therapeutic treatment for Type I Diabetes. Limited islets lifespan in culture remains the main drawback, due to the absence of native extracellular matrix as mechanical support after their enzymatic and mechanical isolation procedure. Extending the limited islets lifespan by creating a long-term culture remains a challenge.
View Article and Find Full Text PDFSkin allografts represent a milestone in burn patient treatment. However, skin procurement is still burdened by high rates of contamination, and validation procedures have not yet been standardized. In addition, it is not clear if tissue viability affects allograft skin outcomes.
View Article and Find Full Text PDFLoss of pancreatic beta cells is a central feature of type 1 (T1D) and type 2 (T2D) diabetes, but a therapeutic strategy to preserve beta cell mass remains to be established. Here we show that the death receptor TMEM219 is expressed on pancreatic beta cells and that signaling through its ligand insulin-like growth factor binding protein 3 (IGFBP3) leads to beta cell loss and dysfunction. Increased peripheral IGFBP3 was observed in established and at-risk T1D/T2D patients and was confirmed in T1D/T2D preclinical models, suggesting that dysfunctional IGFBP3/TMEM219 signaling is associated with abnormalities in beta cells homeostasis.
View Article and Find Full Text PDFBackground: Europe is currently the most active region in the field of pancreatic islet transplantation, and many of the leading groups are actually achieving similar good outcomes. Further collaborative advances in the field require the standardization of islet cell product isolation processes, and this work aimed to identify differences in the human pancreatic islet isolation processes within European countries.
Methods: A web-based questionnaire about critical steps, including donor selection, pancreas processing, pancreas perfusion and digestion, islet counting and culture, islet quality evaluation, microbiological evaluation, and release criteria of the product, was completed by isolation facilities participating at the Ninth International European Pancreas and Islet Transplant Association (EPITA) Workshop on Islet-Beta Cell Replacement in Milan.
(1) Objective: to obtain a reproducible, robust, well-defined, and cost-affordable in vitro model of human cartilage degeneration, suitable for drug screening; (2) Methods: we proposed 3D models of engineered cartilage, considering two human chondrocyte sources (articular/nasal) and five culture methods (pellet, alginate beads, silk/alginate microcarriers, and decellularized cartilage). Engineered cartilages were treated with pro-inflammatory cytokine IL-1β to promote cartilage degradation; (3) Results: articular chondrocytes have been rejected since they exhibit low cellular doubling with respect to nasal cells, with longer culture time for cell expansion; furthermore, pellet and alginate bead cultures lead to insufficient cartilage matrix production. Decellularized cartilage resulted as good support for degeneration model, but long culture time and high cell amount are required to obtain the adequate scaffold colonization.
View Article and Find Full Text PDF