Introduction: Fetal development is dependent on placenta and affected by multiple factors including maternal diabetes. Here we aimed to identify maternal diabetes-associated changes in placentas and analyzed placental gene expression to understand its modulation by maternal diabetes and birth mode.
Methods: Placental RNAseq transcriptome analyses were performed on maternally-derived decidua and fetal-derived villous tissue from pregnancies of mothers with type 1 diabetes (n = 14), gestational diabetes (n = 6) and without diabetes (n = 14).
Replacement of beta cells through transplantation is a potential therapeutic approach for individuals with pancreas removal or poorly controllable type 1 diabetes. However, stress and death of beta cells pose significant challenges. Circulating miRNA has emerged as potential biomarkers reflecting early beta cell stress and death, allowing for timely intervention.
View Article and Find Full Text PDFCurrently, we are experiencing a true pandemic of a communicable disease by the virus SARS-CoV-2 holding the whole world firmly in its grasp. Amazingly and unfortunately, this virus uses a metabolic and endocrine pathway via ACE2 to enter our cells causing damage and disease. Our international research training programme funded by the German Research Foundation has a clear mission to train the best students wherever they may come from to learn to tackle the enormous challenges of diabetes and its complications for our society.
View Article and Find Full Text PDF