Aims: Osteogenesis imperfecta (OI) is a collagen I-related heritable family of skeletal diseases associated to extreme bone fragility and deformity. Its classical forms are caused by dominant mutations in COL1A1 and COL1A2, which encode for the protein α chains, and are characterized by impairment in collagen I structure, folding, and secretion. Mutant collagen I assembles in an altered extracellular matrix affecting mineralization and bone properties and partially accumulating inside the cells, leading to impaired trafficking and cellular stress.
View Article and Find Full Text PDFConvenient, rapid, highly sensitive and on-site iron determination is important for environmental safety and human health. We developed a sensing system for the detection of Fe(III) in water based on 7-mercapto-4-methylcoumarine (MMC)-stabilized silver-coated gold nanostars (GNS@Ag@MMC), exploiting a redox reaction between the Fe(III) cation and the silver shell of the nanoparticles, which causes a severe transformation of the nanomaterial structure, reverting it to pristine GNSs. This system works by simultaneously monitoring changes in the Localized Surface Plasmon Resonance (LSPR) and Surface-Enhanced Raman Spectroscopy (SERS) spectra as a function of added Fe(III).
View Article and Find Full Text PDFAluminum garnets display exceptional adaptability in incorporating mismatching elements, thereby facilitating the synthesis of novel materials with tailored properties. This study explored Ce-doped TbAlScO crystals (where x ranges from 0.5 to 3.
View Article and Find Full Text PDFSelf-standing NaMnTi(PO)/carbon nanofiber (CNF) electrodes are successfully synthesized by electrospinning. A pre-synthesized NaMnTi(PO) is dispersed in a polymeric solution, and the electrospun product is heat-treated at 750 °C in nitrogen flow to obtain active material/CNF electrodes. The active material loading is 10 wt%.
View Article and Find Full Text PDFThe NASICON-structured NaMnZr(PO) compound is a promising high-voltage cathode material for sodium-ion batteries (SIBs). In this study, an easy and scalable electrospinning approach was used to synthesize self-standing cathodes based on NaMnZr(PO) loaded into carbon nanofibers (CNFs). Different strategies were applied to load the active material.
View Article and Find Full Text PDF