Publications by authors named "B Abbate"

Article Synopsis
  • The study focuses on overcoming the radioresistance of glioblastoma (GBM) by using gene knockdown of specific factors that respond to hypoxia, which is known to contribute to treatment resistance.
  • Researchers used the U87 cell line with induced chemical hypoxia and X-ray exposure to evaluate changes in gene expression related to the Warburg effect, cell cycle, and survival, aiming to identify ideal genes for knockdown.
  • The findings indicated that certain gene knockdowns led to significantly reduced cell proliferation and increased expression of genes related to anaerobic glycolysis, suggesting that targeting these genes may improve treatment effectiveness against GBM’s radioresistance.
View Article and Find Full Text PDF

Predictive models based on radiomics and machine-learning (ML) need large and annotated datasets for training, often difficult to collect. We designed an operative pipeline for model training to exploit data already available to the scientific community. The aim of this work was to explore the capability of radiomic features in predicting tumor histology and stage in patients with non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

It is established that human movements in the vicinity of a permanent static magnetic field, such as those in magnetic resonance imaging (MRI) scanners induce electric fields in the human body; this raises potential severe risks of health to radiographers and cleaners exposed routinely to these fields in MRI rooms. The relevant directives and parameters, however, are based on theoretical models, and accurate studies on the simulation of the effects based on human movement data obtained in real conditions are still lacking. Two radiographers and one cleaner, familiar with MRI room activities and these directives, were gait analyzed during the execution of routine job motor tasks at different velocities.

View Article and Find Full Text PDF

Cancer heterogeneity represents the main issue for defining an effective treatment in clinical practice, and the scientific community is progressively moving towards the development of more personalized therapeutic regimens. Radiotherapy (RT) remains a fundamental therapeutic treatment used for many neoplastic diseases, including breast cancer (BC), where high variability at the clinical and molecular level is known. The aim of this work is to apply the generalized linear quadratic (LQ) model to customize the radiant treatment plan for BC, by extracting some characteristic parameters of intrinsic radiosensitivity that are not generic, but may be exclusive for each cell type.

View Article and Find Full Text PDF

In breast cancer (BC) care, radiotherapy is considered an efficient treatment, prescribed both for controlling localized tumors or as a therapeutic option in case of inoperable, incompletely resected or recurrent tumors. However, approximately 90% of BC-related deaths are due to the metastatic tumor progression. Then, it is strongly desirable to improve tumor radiosensitivity using molecules with synergistic action.

View Article and Find Full Text PDF