Publications by authors named "B A de La Houssaye"

Increasingly, evidence suggests that exposure to maternal obesity creates an inflammatory environment , exerting long-lasting postnatal signatures on the juvenile innate immune system and microbiome that may predispose offspring to development of fatty liver disease. We found that exposure to a maternal Western-style diet (WD) accelerated fibrogenesis in the liver of offspring and was associated with early recruitment of proinflammatory macrophages at 8-12 weeks and microbial dysbiosis as early as 3 weeks of age. We further demonstrated that bone marrow-derived macrophages (BMDMs) were polarized toward an inflammatory state at 8 weeks of age and that a potent antioxidant, pyrroloquinoline quinone (PQQ), reversed BMDM metabolic reprogramming from glycolytic toward oxidative metabolism by restoring trichloroacetic acid cycle function at isocitrate dehydrogenase.

View Article and Find Full Text PDF

The intrauterine period is a critical time wherein developmental exposure can influence risk for chronic disease including childhood obesity. Using umbilical cord-derived mesenchymal stem cells (uMSC) from offspring born to normal-weight and obese mothers, we tested the hypothesis that changes in infant body composition over the first 5 months of life correspond with differences in cellular metabolism and transcriptomic profiles at birth. Higher long-chain acylcarnitine concentrations, lipid transport gene expression, and indicators of oxidative stress in uMSC-adipocytes were related to higher adiposity at 5 months of age.

View Article and Find Full Text PDF

Adipose tissue expansion progresses rapidly during postnatal life, influenced by both prenatal maternal factors and postnatal developmental cues. The ratio of omega-6 (n-6) relative to n-3 polyunsaturated fatty acids (PUFAs) is believed to regulate perinatal adipogenesis, but the cellular mechanisms and long-term effects are not well understood. We lowered the fetal and postnatal n-6/n-3 PUFA ratio exposure in wild-type offspring under standard maternal dietary fat amounts to test the effects of low n-6/n-3 ratios on offspring adipogenesis and adipogenic potential.

View Article and Find Full Text PDF

Maternal obesity is a global health problem that increases offspring obesity risk. The metabolic pathways underlying early developmental programming in human infants at risk for obesity remain poorly understood, largely due to barriers in fetal/infant tissue sampling. Utilizing umbilical cord-derived mesenchymal stem cells (uMSC) from offspring of normal weight and obese mothers, we tested whether energy metabolism and gene expression differ in differentiating uMSC myocytes and adipocytes, in relation to maternal obesity exposures and/or neonatal adiposity.

View Article and Find Full Text PDF

Background/objectives: The impact of maternal BMI and insulin sensitivity on bioactive components of human milk (HM) is not well understood. As the prevalence of obesity and diabetes rises, it is increasingly critical that we understand how maternal BMI and hormones associated with metabolic disease relate to concentrations of bioactive components in HM.

Subjects/methods: This longitudinal cohort design followed 48 breastfeeding mothers through the first four months of lactation, collecting fasting morning HM samples at 2-weeks and 1, 2, 3 and 4-months, and fasting maternal blood at 2-weeks and 4-months.

View Article and Find Full Text PDF