Publications by authors named "B A Sava"

This study investigates the potential of combining Cerium-doped bioactive glass (BBGi) with Polyvinylpyrrolidone (PVP) to enhance the properties of titanium (Ti) implant surfaces using the Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique. The primary focus is on improving osseointegration, corrosion resistance, and evaluating the cytotoxicity of the developed thin films towards host cells. The innovative approach involves synthesizing a composite thin film comprising BBGi and PVP, leveraging the distinct benefits of both materials: BBGi's biocompatibility and osteoinductive capabilities, and PVP's film-forming and biocompatible properties.

View Article and Find Full Text PDF

Bioactive glass is currently considered a material with a high biocompatibility and has been used both in the field of bone regeneration and in the preparation of cosmetic products with the controlled release of active compounds. The present work involved a study on the synthesis of bioglass using the sol-gel process. The study aims to evaluate the influence of the treatment of bioglass with Polyethylene glycol 4000 (PEG 4000) on its main characteristics.

View Article and Find Full Text PDF

Engineering of scaffolds for bone regeneration is often inspired by the native extracellular matrix mimicking its composite fibrous structure. In the present study, we used low loadings of diatomite earth (DE) biosilica to improve the bone regeneration potential of gelatin electrospun fibrillar microenvironments. We explored the effect of increasing the DE content from 1 % to 3 % and 5 %, respectively, on the physico-chemical properties of the fibrous scaffolds denoted FG_DE1, FG_DE3, FG_DE5, regarding the aqueous media affinity, stability under simulated physiological conditions, morphology characteristics, and local mechanical properties at the surface.

View Article and Find Full Text PDF

High-quality convex colloidal photonic crystals can be grown on the tip of an optical fiber by self-assembly using the hanging drop method. They are convex-shaped, produce the diffraction of reflecting light with high efficiency (blazing colors), and have a high curvature. The convex colloidal crystals are easily detachable and, as free-standing objects, they are mechanically robust, allowing their manipulation and use as convex reflective diffraction devices in imaging spectrometers.

View Article and Find Full Text PDF

In this study, a sol-gel film based on lead sulfide (PbS) quantum dots incorporated into a host network was synthesized as a special nanostructured composite material with potential applications in temperature sensor systems. This work dealt with the optical, structural, and morphological properties of a representative PbS quantum dot (QD)-containing thin film belonging to the AlO-SiO-PO system. The film was prepared using the sol-gel method combined with the spin coating technique, starting from a precursor solution containing a suspension of PbS QDs in toluene with a narrow size distribution and coated on a glass substrate in a multilayer process, followed by annealing of each deposited layer.

View Article and Find Full Text PDF