Publications by authors named "B A Rupnow"

Unlabelled: Although recent efforts have led to the development of highly effective androgen receptor (AR)-directed therapies for the treatment of advanced prostate cancer, a significant subset of patients will progress with resistant disease including AR-negative tumors that display neuroendocrine features [neuroendocrine prostate cancer (NEPC)]. On the basis of RNA sequencing (RNA-seq) data from a clinical cohort of tissue from benign prostate, locally advanced prostate cancer, metastatic castration-resistant prostate cancer and NEPC, we developed a multi-step bioinformatics pipeline to identify NEPC-specific, overexpressed gene transcripts that encode cell surface proteins. This included the identification of known NEPC surface protein CEACAM5 as well as other potentially targetable proteins (e.

View Article and Find Full Text PDF

The dysregulation of the PRC1/2 complex plays a key role in lineage plasticity in prostate cancer and may be required to maintain neuroendocrine phenotype. [1] CBX2, a key component of the canonical PRC1 complex, is an epigenetic reader, recognizing trimethylated lysine on histone 3 (H3K27me3) [2] and is overexpressed in metastatic neuroendocrine prostate cancer. [3,4] We implemented a screening strategy using nucleosome substrates to identify inhibitors of CBX2 binding to chromatin.

View Article and Find Full Text PDF

Background: Antiandrogens are effective therapies that block androgen receptor (AR) transactivation and signaling in over 50% of castration-resistant prostate cancer (CRPC) patients. However, an estimated 30% of responders will develop resistance to these therapies within 2 years. JNJ-pan-AR is a broad-spectrum AR antagonist that inhibits wild-type AR as well as several mutated versions of AR that have emerged in patients on chronic antiandrogen treatment.

View Article and Find Full Text PDF

Castration-resistant prostate cancers (CRPCs) lose sensitivity to androgen-deprivation therapies but frequently remain dependent on oncogenic transcription driven by the androgen receptor (AR) and its splice variants. To discover modulators of AR-variant activity, we used a lysate-based small-molecule microarray assay and identified KI-ARv-03 as an AR-variant complex binder that reduces AR-driven transcription and proliferation in prostate cancer cells. We deduced KI-ARv-03 to be a potent, selective inhibitor of CDK9, an important cofactor for AR, MYC, and other oncogenic transcription factors.

View Article and Find Full Text PDF

Emerging literature suggests that metabolic pathways play an important role in the maintenance and progression of human cancers. In particular, recent studies have implicated lipid biosynthesis and desaturation as a requirement for tumor cell survival. In the studies reported here, we aimed to understand whether tumor cells require the activity of either human isoform of stearoyl-CoA-desaturase (SCD1 or SCD5) for survival.

View Article and Find Full Text PDF