Publications by authors named "B A Rasulov"

Unlabelled: The current paper deals with new metabolites of different groups produced by XU1. The strain's metabolic diversity is strongly altered by different factors, and some secondary metabolites are being reported for the first time for this species. As an abiotic/biotic stress response, the strain produced a broad spectrum of indole ring-containing compounds, n-alkanes (eicosane, heneicosane, docosane, tetracosane, and hexacosane), alkanes (7-hexyl eicosane and 2-methyloctacosane), saturated fatty acids (hexanoic and octanoic acids), esters (hexadecanoic acid methyl and pentadecanoic acid-14-methyl-methyl esters), and amides (9-Octadecenamide, (Z)- and 13-Docosenamide, (Z)-).

View Article and Find Full Text PDF

Desiccation-rehydration studies in cryptogams constitute an important tool to understand the relation of key physiological traits with species stress tolerance and environmental adaptability. Real-time monitoring of responses has been limited by the design of commercial or custom measuring cuvettes and difficulties in experimental manipulation. We developed a within-chamber rehydration method that allows to rewater the samples rapidly, without the need to open the chamber and take out the sample for manual rehydration by the investigator.

View Article and Find Full Text PDF

Isoprene is the most abundant non-methane hydrocarbon emitted to the atmosphere and a target of biotechnology as a source of biofuels or chemical feedstock. Measurements of the amount of isoprene or the rate of production of isoprene are important for atmospheric chemistry, evaluating biotechnology processes, and can provide information on the capacity and regulation of the methyl erythritol 4-phosphate pathway found in plants and bacteria. In this chapter we discuss techniques, and their strengths and weaknesses, of methods in common use for measuring isoprene.

View Article and Find Full Text PDF

Leaf isoprene emission rate, I, decreases with increasing atmospheric CO concentration with major implications for global change. There is a significant interspecific variability in [CO ]-responsiveness of I, but the extent of this variation is unknown and its reasons are not understood. We hypothesized that the magnitude of emission reduction reflects the size and changeability of precursor pools responsible for isoprene emission (dimethylallyl diphosphate, DMADP and 2-methyl-erythritol 2,4-cyclodiphosphate, MEcDP).

View Article and Find Full Text PDF

A molecular and metabolic behaviour of EPS-producing and salt-tolerant bacterium Rhizobium radiobacter SZ4S7S14 along with its practical application in salt-stress was investigated. The research target was identification and expression profiles of a large EPS biosynthesis gene cluster, possible structural modification of EPS under salt-stress effect and analysis of the gene(s) relative expression and structural modification correlation. As expected, transposons insertions were identified within or near the coding regions of exoK and exoM, previously known large gene cluster that is required for EPS I synthesis.

View Article and Find Full Text PDF