Publications by authors named "B A Parks"

The lactating mammary gland strongly induces de novo lipogenesis (DNL) to support the synthesis of fatty acids, triglycerides, and cholesterol found within milk. In monogastric species, glucose is a major substrate utilized for DNL within the lactating mammary gland and must be efficiently taken up and processed to supply cytosolic acetyl-CoA for DNL. Along with the enzymes of the DNL pathway, the glycolytic enzyme, Aldolase C (Aldoc), is transcriptionally upregulated and is highly expressed during lactation in the mammary gland, suggesting a role for Aldoc in lactation.

View Article and Find Full Text PDF

Agpat5 (1-acylglycerol-3-phosphate O-acyltransferase 5) is a broadly expressed lipid regulatory enzyme involved in glycerophospholipid metabolism. Multiple genetic studies in mice and humans have identified that Agpat5 is associated with plasma insulin, cholesterol, and alanine aminotransferase levels. Despite the strong genetic evidence on Agpat5, no study has investigated its liver-specific role in physiology.

View Article and Find Full Text PDF

The binding of multiple transcription factors (TFs) to genomic enhancers drives gene expression in mammalian cells. However, the molecular details that link enhancer sequence to TF binding, promoter state and transcription levels remain unclear. Here we applied single-molecule footprinting to measure the simultaneous occupancy of TFs, nucleosomes and other regulatory proteins on engineered enhancer-promoter constructs with variable numbers of TF binding sites for both a synthetic TF and an endogenous TF involved in the type I interferon response.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates seasonal changes in neurogenesis, or new neuron formation, in specific brain regions related to vocal behavior and auditory perception in European starlings.
  • Researchers found differences in the type and amount of neurogenesis between spring and fall, with males showing increased neurogenesis in certain brain areas during fall, while females did not exhibit seasonal differences.
  • Additionally, the study noted a higher level of plasma corticosterone in spring, linked to male reproductive conditions, but no correlation with neurogenesis or stress indicators in either sex.
View Article and Find Full Text PDF