Social interactions are typically impaired in neuropsychiatric disorders such as autism, for which the genetic underpinnings are very complex. Social interactions can be modeled by analysis of behaviors, including social spacing, sociability, and aggression, in simpler organisms such as . Here, we examined the effects of mutants of the autism-related gene () on fly social and non-social behaviors.
View Article and Find Full Text PDFSickle cell disease results from a point mutation in exon 1 of the β-globin gene (total 3 exons). Replacing sickle β-globin exon 1 (and exon 2) with a normal sequence by trans-splicing is a potential therapeutic strategy. Therefore, this study sought to develop trans-splicing targeting β-globin pre-messenger RNA among human erythroid cells.
View Article and Find Full Text PDFNeuroligins are postsynaptic neural cell adhesion molecules that mediate synaptic maturation and function in vertebrates and invertebrates, but their mechanisms of action and regulation are not well understood. At the Drosophila larval neuromuscular junction (NMJ), previous analysis demonstrated a requirement for Drosophila neuroligin 1 (dnlg1) in synaptic growth and maturation. The goal of the present study was to better understand the effects and mechanisms of loss-of-function and overexpression of dnlg1 on synapse size and function, and to identify signaling pathways that control dnlg1 expression.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2004
RNA interference was used to screen 3,314 Drosophila double-stranded RNAs, corresponding to approximately 25% of Drosophila genes, for genes that affect the development of the embryonic nervous system. RNA-interference-mediated gene silencing in Drosophila embryos resulted in loss-of-function mutant phenotypes for 43 genes, which is 1.3% of the genes that were screened.
View Article and Find Full Text PDFClassical genetic screens can be limited by the selectivity of mutational targeting, the complexities of anatomically based phenotypic analysis, or difficulties in subsequent gene identification. Focusing on signaling response to the secreted morphogen Hedgehog (Hh), we used RNA interference (RNAi) and a quantitative cultured cell assay to systematically screen functional roles of all kinases and phosphatases, and subsequently 43% of predicted Drosophila genes. Two gene products reported to function in Wingless (Wg) signaling were identified as Hh pathway components: a cell surface protein (Dally-like protein) required for Hh signal reception, and casein kinase 1alpha, a candidate tumor suppressor that regulates basal activities of both Hh and Wg pathways.
View Article and Find Full Text PDF