1. The human pur H (ATIC) gene encoding a bifunctional protein, hPurH, which carries the penultimate and final enzymatic activities of the purine nucleotide synthesis pathway, AICARFT & IMPCH, has been cloned and sequenced. The gene product, hPurH has been overexpressed in E.
View Article and Find Full Text PDFN-[4-[2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl ]-benzoyl]-L-glutamic acid (LY231514) is a novel pyrrolo[2,3-d]pyrimidine-based antifolate currently undergoing extensive Phase II clinical trials. Previous studies have established that LY231514 and its synthetic gamma-polyglutamates (glu3 and glu5) exert potent inhibition against thymidylate synthase (TS). We now report that LY231514 and its polyglutamates also markedly inhibit other key folate-requiring enzymes, including dihydrofolate reductase (DHFR) and glycinamide ribonucleotide formyltransferase (GARFT).
View Article and Find Full Text PDFWe report here the cloning and sequencing of the cDNA, purification, steady state kinetic analysis, and truncation mapping studies of the human 5-aminoimidazole- 4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (AICARFT/IMPCHase). These steps of de novo purine biosynthesis, respectively. In all species of both prokaryotes and eukaryotes studied, these two activities are present on a single bifunctional polypeptide encoded on the purH gene.
View Article and Find Full Text PDF5,10-dideaza-5,6,7,8-terrahydrofolic acid (DDATHF) is a potent antiproliferative agent in cell culture systems and in vivo in a number of murine and human xenograft tumors. In contrast to classical antifolates, which are dihydrofolate reductase inhibitors, DDATHF primarily inhibits GAR transformylase, the first folate-dependent enzyme along the pathway of de novo purine biosynthesis. The (6R) diastereomer of DDATHF (Lometrexol), currently undergoing clinical investigation, was used to develop CCRF-CEM human leukemia sublines resistant to increasing concentrations of the drug.
View Article and Find Full Text PDF5,10-Dideazatetrahydrolic acid (DDATHF) is representative of a new class of antifolates acting through inhibition of de novo purine synthesis. We report here the transport characteristics of the diastereomers of DDATHF, which differ in configuration at C6, and comparison studies with other folate and antifolate analogs. (6R)-DDATHF showed high affinity for the influx system of CCRF-CEM cells with a Km of 1.
View Article and Find Full Text PDF