Research collaborations and licensing deals are critical for the discovery and development of life-saving drugs. This practice has been ongoing since the inception of the pharmaceutical industry. The current process of drug discovery and development is complex, regulated, and highly regimented, having evolved over time.
View Article and Find Full Text PDFPeptide nucleic acids (PNAs) are antisense molecules with excellent polynucleotide hybridization properties; they are resistant to nuclease degradation but often have poor cell permeability leading to moderate cellular activity and limited clinical results. The addition of cationic substitutions (positive charges) to PNA molecules greatly increases cell permeability. In this report, we describe the synthesis and polynucleotide hybridization properties of a novel cationic/amino-alkyl nucleotide base-modified PNA (OPNA).
View Article and Find Full Text PDFHerein, we disclose three structurally differentiated γ-secretase modulators (GSMs) based on an oxadiazine scaffold. The analogues from series I potently inhibit the generation of Aβ in vitro when the substituents at 3 and 4 positions of the oxadiazine moiety adopt an α orientation (cf. ).
View Article and Find Full Text PDFWe describe successful efforts to optimize the in vivo profile and address off-target liabilities of a series of BACE1 inhibitors represented by 6 that embodies the recently validated fused pyrrolidine iminopyrimidinone scaffold. Employing structure-based design, truncation of the cyanophenyl group of 6 that binds in the S3 pocket of BACE1 followed by modification of the thienyl group in S1 was pursued. Optimization of the pyrimidine substituent that binds in the S2'-S2″ pocket of BACE1 remediated time-dependent CYP3A4 inhibition of earlier analogues in this series and imparted high BACE1 affinity.
View Article and Find Full Text PDFThe development of renin inhibitors with favorable oral pharmacokinetic profiles has been a longstanding challenge for the pharmaceutical industry. As part of our work to identify inhibitors of BACE1, we have previously developed iminopyrimidinones as a novel pharmacophore for aspartyl protease inhibition. In this letter we describe how we modified substitution around this pharmacophore to develop a potent, selective and orally active renin inhibitor.
View Article and Find Full Text PDF