We study the associated production of prompt J/ψ mesons and W or Z bosons within the factorization approach of nonrelativistic QCD (NRQCD) at next-to-leading order in α_{s}, via intermediate color singlet ^{3}S_{1}^{[1]} and ^{3}P_{J}^{[1]} and color octet ^{1}S_{0}^{[8]}, ^{3}S_{1}^{[8]}, and ^{3}P_{J}^{[8]} states. Requiring for our predictions to be compatible with recent ATLAS measurements yields stringent new constraints on charmonium long-distance matrix elements (LDMEs) being nonperturbative, process-independent input parameters. Considering four popular LDME sets fitted to data of single J/ψ inclusive production, we find that one is marginally compatible with the data, with central predictions typically falling short by a factor of 3, one is unfavored, the factor of shortfall being about 1 order of magnitude, and two violate cross section positivity for direct J/ψ+W/Z production.
View Article and Find Full Text PDFWe compute the nonplanar contribution to the universal anomalous dimension of the SU(4)-singlet twist-two operators in N=4 supersymmetric Yang-Mills theory at four loops through Lorentz spin 18. From this, we numerically evaluate the nonplanar contribution to the four-loop lightlike cusp anomalous dimension and derive the transcendental ζ_{3} and ζ_{5} parts of the universal anomalous dimension for arbitrary Lorentz spin in analytic form. As for the lightlike cusp anomalous dimension and the ζ_{5} part of the universal anomalous dimension, we confirm previous results.
View Article and Find Full Text PDFWe study double prompt J/ψ hadroproduction within the nonrelativistic-QCD factorization formalism adopting the parton Reggeization approach to treat initial-state radiation in a gauge invariant and infrared-safe way. We present first predictions for the cross section distributions in the transverse momenta of the subleading J/ψ meson and the J/ψ pair. Already at leading order in α_{s}, these predictions as well as those for the total cross section and its distributions in the invariant mass m_{ψψ} and the rapidity separation |Y| of the J/ψ pair nicely agree with recent ATLAS and CMS Collaboration measurements, except for the large-m_{ψψ} and large-|Y| regions, where the predictions substantially undershoot the data.
View Article and Find Full Text PDFBased on the hypothesis that the X(3872) exotic hadron is a mixture of χ_{c1}(2P) and other states and that its prompt hadroproduction predominately proceeds via its χ_{c1}(2P) component, we calculate the prompt-X(3872) polarization at the CERN LHC through next-to-leading order in α_{s} within the factorization formalism of nonrelativistic QCD, including both the color-singlet ^{3}P_{1}^{[1]} and color-octet ^{3}S_{1}^{[8]} cc[over ¯] Fock states. We also consider the polarization of the J/ψ produced by the subsequent X(3872) decay. We predict that, under ATLAS, CMS, and LHCb experimental conditions, the X(3872) is largely longitudinally polarized, while the J/ψ is largely transversely polarized.
View Article and Find Full Text PDFWe study inclusive processes involving two heavy quarkonia in nonrelativistic QCD (NRQCD) and demonstrate that, in the presence of two P-wave Fock states, NRQCD factorization breaks down, leaving uncanceled infrared singularities. As phenomenologically important examples, we consider the decay ϒ→χ_{cJ}+X via bb[over ¯](^{3}P_{J_{b}}^{[8]})→cc[over ¯](^{3}P_{J}^{[1]})+gg and the production process e^{+}e^{-}→J/ψ+χ_{cJ}+X via e^{+}e^{-}→cc[over ¯](^{3}P_{J_{1}}^{[8]})+cc[over ¯](^{3}P_{J}^{[1]})+g. We infer that such singularities will appear for double quarkonium hadroproduction at next-to-leading order.
View Article and Find Full Text PDF