In a recent paper [Wang, Huang, and Feng, Phys. Rev. E 99, 063206 (2019)2470-004510.
View Article and Find Full Text PDFFew general models representing certain classes of real glass-forming systems play a special role in computer simulations of supercooled liquid and glasses. Recently, it was shown that one of the most widely used model glassformers-the Kob-Andersen binary mixture-crystalizes in quite lengthy molecular dynamics simulations, and moreover, it is in fact a very poor glassformer at large system sizes. Thus, our understanding of crystallization stability of model glassformers is far from complete due to the fact that relatively small system sizes and short time scales have been considered so far.
View Article and Find Full Text PDFBinary Cu-Zr system is a representative bulk glassformer demonstrating high glass-forming ability (GFA). From the first glance, the Ni-Zr system is the most natural object to expect the same behavior because nickel and copper are neighbors in the periodic table and have similar physicochemical properties. However, it is known that the Ni-Zr system has worse GFA than the Cu-Zr one.
View Article and Find Full Text PDF