The γ-tubulin ring complex (γ-TuRC) is a structural template for controlled nucleation of microtubules from α/β-tubulin heterodimers. At the cytoplasmic side of the yeast spindle pole body, the CM1-containing receptor protein Spc72 promotes γ-TuRC assembly from seven γ-tubulin small complexes (γ-TuSCs) and recruits the microtubule polymerase Stu2, yet their molecular interplay remains unclear. Here, we determine the cryo-EM structure of the Candida albicans cytoplasmic nucleation unit at 3.
View Article and Find Full Text PDFMicroplastics pose numerous threats to aquatic environments, yet understanding their transport mechanisms remains limited. Drawing from natural sediment research provides valuable insights to address this knowledge gap. One key dimensionless number used to describe sediment transport is the transport stage, referring to the ratio between the flow shear velocity and the particle settling velocity.
View Article and Find Full Text PDFIn cells, microtubules (MTs) assemble from α/β-tubulin subunits at nucleation sites containing the γ-tubulin ring complex (γ-TuRC). Within the γ-TuRC, exposed γ-tubulin molecules act as templates for MT assembly by interacting with α/β-tubulin. The vertebrate γ-TuRC is scaffolded by γ-tubulin-interacting proteins GCP2-6 arranged in a specific order.
View Article and Find Full Text PDFSpintronics, utilizing both the charge and spin of electrons, benefits from the nonvolatility, low switching energy, and collective behavior of magnetization. These properties allow the development of magnetoresistive random access memories, with magnetic tunnel junctions (MTJs) playing a central role. Various spin logic concepts are also extensively explored.
View Article and Find Full Text PDF