Publications by authors named "B A Didion"

Sperm cryopreservation is an important technique for fertility management, but post-thaw viability of sperm differs among breeding bulls. With metabolites being the end products of various metabolic pathways, the contributions of seminal plasma metabolites to sperm cryopreservation are still unknown. These gaps in the knowledge base are concerning because they prevent advances in the fundamental science of cryobiology and improvement of bull fertility.

View Article and Find Full Text PDF

Development of probes capable of recognizing specific regions of chromosomal DNA has been a long-standing goal for chemical biologists. Current strategies such as PNA, triplex-forming oligonucleotides, and polyamides are subject to target choice limitations and/or necessitate non-physiological conditions, leaving a need for alternative approaches. Toward this end, we have recently introduced double-stranded oligonucleotide probes that are energetically activated for DNA recognition through modification with +1 interstrand zippers of intercalator-functionalized nucleotide monomers.

View Article and Find Full Text PDF

Post-acrosomal WW-domain binding protein (PAWP) is a signaling molecule located in the post-acrosomal sheath (PAS) of mammalian spermatozoa. We hypothesized that the proper integration of PAWP in the sperm PAS is reflective of bull-sperm quality and fertility. Cryopreserved semen samples from 298 sires of acceptable, but varied, fertility used in artificial insemination services were analyzed using immunofluorescence microscopy and flow cytometry for PAWP protein.

View Article and Find Full Text PDF

The invasion has begun: Invaders are shown to recognize DNA hairpins in cell-free assays and chromosomal DNA during non-denaturing fluorescence in situ hybridization (nd-FISH) experiments. As Invaders are devoid of inherent sequence limitations, many previously inaccessible DNA targets could become accessible to exogenous control with important ramifications for karyotyping, in vivo imaging, and gene regulation.

View Article and Find Full Text PDF

Worldwide, greater than 90% of sows are inseminated with fresh semen. Less than 1% is inseminated using frozen semen. Albeit, frozen semen is an effective technology for the transfer of genes between breeding pyramids and also to reliably provide semen for planned matings.

View Article and Find Full Text PDF