The Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis. Two recently developed post hoc ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples.
View Article and Find Full Text PDFThe Bipolar-Schizophrenia Network for Intermediate Phenotypes (B-SNIP) created psychosis Biotypes based on neurobiological measurements in a multi-ancestry sample. These Biotypes cut across DSM diagnoses of schizophrenia, schizoaffective disorder and bipolar disorder with psychosis. Two recently developed ancestry adjustment methods of Polygenic Risk Scores (PRSs) generate Ancestry-Adjusted PRSs (AAPRSs), which allow for PRS analysis of multi-ancestry samples.
View Article and Find Full Text PDFCategorical diagnosis, a pillar of the medical model, has not worked well in psychiatry where most diagnoses are still exclusively symptom based. Uncertainty continues about whether categories or dimensions work better for the assessment and treatment of idiopathic psychoses. The Bipolar Schizophrenia Network for Intermediate Phenotypes (B-SNIP) examined multiple cognitive and electrophysiological biomarkers across a large transdiagnostic psychosis data set.
View Article and Find Full Text PDFBackground: The profiles of cortical gyrification across schizophrenia, bipolar I disorder, and schizoaffective disorder have been studied to a limited extent, report discordant findings, and are rarely compared in the same study. Here we assess gyrification in a large dataset of psychotic disorder probands, categorized according to the DSM-IV. Furthermore, we explore gyrification changes with age across healthy controls and probands.
View Article and Find Full Text PDFSmooth pursuit eye movements are considered a well-established and quantifiable biomarker of sensorimotor function in psychosis research. Identifying psychotic syndromes on an individual level based on neurobiological markers is limited by heterogeneity and requires comprehensive external validation to avoid overestimation of prediction models. Here, we studied quantifiable sensorimotor measures derived from smooth pursuit eye movements in a large sample of psychosis probands (N = 674) and healthy controls (N = 305) using multivariate pattern analysis.
View Article and Find Full Text PDF