Merkel cell carcinoma (MCC) is a rare neuroendocrine skin cancer. Prior to the advent of immunotherapy, treatment options were limited. In our study, we evaluate the impact of tumor cell PD-L1 expression and tumor immune microenvironment on survival in MCC patients who were not treated with immune checkpoint inhibitors.
View Article and Find Full Text PDFBackground: Interleukin (IL)-12 is a pro-inflammatory cytokine that mediates T-helper type 1 responses and cytotoxic T-cell activation, contributing to its utility as anti-cancer agent. Systemic administration of IL-12 often results in unacceptable toxicity; therefore, strategies to direct delivery of IL-12 to tumors are under investigation. The objective of this study was to assist the preclinical development of NHS-IL12, an immunocytokine consisting of an antibody, which targets necrotic tumor regions, linked to IL-12.
View Article and Find Full Text PDFPurpose: The goal of the study was to engineer a form of interleukin 2 (IL-2) that, when delivered as a tumor-specific antibody fusion protein, retains the ability to stimulate an antitumor immune response via interaction with the high-affinity IL-2 receptor but has lower toxicity because of the reduced activation of the intermediate-affinity IL-2 receptor.
Experimental Design: We investigated changes in the proposed toxin motif of IL-2 by introducing a D20T mutation that has little effect on the activity of free IL-2. We expressed this IL-2 variant as a fusion protein with an antibody (NHS76) that targets the necrotic core of tumors and characterized this molecule (NHS-IL2LT) in vitro and in vivo.
IL-12 is a cytokine which showed anti-tumor effects in clinical trials, but also produced serious toxicity. We describe a fusion protein, huBC1-IL12, designed to achieve an improved therapeutic index by specifically targeting IL-12 to tumor and tumor vasculature. huBC-1 is a humanized antibody that targets a cryptic sequence of the human ED-B-containing fibronectin isoform, B-FN, present in the subendothelial extracellular matrix of most aggressive tumors.
View Article and Find Full Text PDFErythropoietin (Epo) is a cytokine that controls the production of red blood cells (RBCs). Epo acts continuously on RBC precursors to prevent apoptosis, so it is important to maintain high levels of Epo activity when treating anemic patients. We describe here modified human Epo [Epo(NDS)] with mutations His32Gly, Cys33Pro, Trp88Cys and Pro90Ala that result in the rearrangement of the disulfide bonding pattern from Cys29-Cys33 to Cys29-Cys88 and that, in the context of an Fc-Epo(NDS) fusion protein, lead to significantly improved properties.
View Article and Find Full Text PDF